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Abstract. Formaldehyde (HCHO) has been measured from space for more than two decades. Owing to its short atmospheric 

lifetime, satellite HCHO data are used widely as a proxy of volatile organic compounds (VOCs; please refer to Appendix A 

for abbreviations and acronyms), providing constraints on underlying emissions and chemistry. However, satellite HCHO 

products from different satellite sensors using different algorithms have received little validation so far. The accuracy and 

consistency of HCHO retrievals remain largely unclear. Here we develop a global validation platform for satellite HCHO 25 

retrievals using in situ observations from 12 aircraft campaigns with a chemical transport model (GEOS-Chem) as the 

intercomparison method. Application to the NASA operational OMI HCHO product indicates slight biases (–30.9% to +16.0%) 

under high-HCHO conditions partially caused by a priori shape factors used in the retrievals, while high biases (+113.9% to 

+194.6%) under low-HCHO conditions due mainly to slant column fitting and radiance reference sector correction. By 

providing quick assessment to systematic biases in satellite products over large domains, the platform facilitates, in an iterative 30 

process, optimization of retrieval settings and the minimization of retrieval biases. It is also complementary to localized 

validation efforts based on ground observations and aircraft spirals. 
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1 Introduction 

Formaldehyde (HCHO) is ubiquitous in the troposphere due to its high product yields from atmospheric oxidation of volatile 

organic compounds (VOCs). Methane mainly controls the tropospheric background, whereas regional enhancements are 35 

contributed largely by short-lived non-methane VOCs (NMVOCs) emitted from the biosphere, human activities, and wildfires. 

HCHO is detectable from space using solar ultraviolet backscattered radiation between 325 and 360 nm [Chance et al., 2000]. 

HCHO vertical column densities (VCDs; in the unit of molecules cm–2) are obtained after the retrieval process and the 

consideration of a priori information. Because of the short atmospheric lifetime of HCHO (a few hours), satellite HCHO VCD 

has been used as a localized proxy for NMVOC emissions [e.g., Palmer et al., 2003; Shim et al., 2005; Stavrakou et al., 2009; 40 

Marais et al., 2012; Barkley et al., 2013; Zhu et al., 2014; Zhu et al., 2017a; Cao et al., 2018; Surl et al., 2018]. In addition, 

previous applications of HCHO retrievals also include evaluating surface ozone sensitivity [Jin and Holloway, 2015; Jin et al., 

2017], quantifying cancer risks of ambient HCHO [Zhu et al., 2017b], estimating organic aerosol abundance [Liao et al., 2019], 

and mapping hydroxyl (OH) radicals [Wolfe et al., 2019]. However, validation of satellite HCHO products from different 

satellite sensors using different algorithms have received little attention so far. Validation exercises over different regions in 45 

different seasons remain extremely limited. Here we develop a validation platform built with HCHO observations from 12 

aircraft campaigns over the United States, Eastern Asia, and the remote Pacific Ocean. We further apply it to the NASA 

operational HCHO product and report the validation results. 

 

HCHO has been continuously observed from space for more than two decades since GOME (1996–2003) [Chance et al., 2000; 50 

De Smedt et al., 2008] and SCIAMACHY (2003–2012) [Wittrock et al., 2006; De Smedt et al., 2008]. Presently available 

observations are from OMI (2004–) [De Smedt et al., 2015; González Abad et al., 2015], GOME-2A (2006–) [De Smedt et al., 

2012], OMPS (2011–) [Li et al., 2015; González Abad et al., 2016], GOME-2B (2012–) [De Smedt et al., 2012], and 

TROPOMI (2018–) [De Smedt et al., 2018]. Hourly HCHO observations (in daytime) will be made available from a 

constellation of geostationary satellites to be launched in the coming 1–3 years, including GEMS (2020) [Kim et al., 2019; 55 

Kwon et al., 2019] over Eastern Asia, TEMPO (2022) [Zoogman et al., 2017] over North America, and Sentinel-4 (2023) 

[Courrèges-Lacoste et al., 2017] over Europe. HCHO retrieved from the above satellites generally follows a two-step approach, 

slant column density (SCD) fitting and conversion of it to VCD using localized air mass factors (AMFs), with retrieval errors 

being introduced in each step [Marais et al., 2012; De Smedt et al., 2015; González Abad et al., 2015; Hewson et al., 2015; 

Kwon et al., 2017; Herman et al., 2018; Nowlan et al., 2018]. 60 

 

Previous validation of HCHO satellite data sets is often conducted by directly comparing coincident satellite pixels and 

observation points. Wittrock et al. [2006] and Vigouroux et al. [2009] found SCIAMACHY HCHO columns are unbiased 

compared with ground-based measurements over remote regions. De Smedt et al. [2015] reported OMI and GOME2 data are 

–20% to –40% biased against observed vertical profiles. Wang et al. [2017] reported biases in OMI and GOME2 data of –12% 65 
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to –20% over the Eastern China from May to December. A recent study showed monthly bias in OMI data ranges from –11% 

in summer to +26% in winter in Beijing between 2010 and 2016 [Wang et al., 2019]. Comparison with aircraft observations 

indicated that GOME data are +16% biased during summer over Eastern Texas in the United States [Martin et al., 2004], and 

that OMI data are biased by –37% in October over Guyana [Barkley et al., 2013]. Tan et al. [2018] found OMPS data are –

18% biased against ship-based measurements in June over the East China Sea. 70 

 

Such direct validation approaches, however, face three practical challenges. First, they require the averaging of extensive 

observations to reduce large random noises associated with individual satellite retrievals. Second, they fail to make full use of 

precise in situ observations. Low earth orbit (LEO) satellites pass over a certain location within a fixed time window up to a 

couple of times per day, meaning only a small fraction of observations are coincident with satellite pixels thus suitable for the 75 

purpose of direct validation. Finally, reliability of validation results is unclear for areas beyond the observation sites/domains. 

 

Alternatively, Zhu et al. [2016] proposed an indirect validation approach with a chemical transport model (CTM) as the 

intercomparison method. This approach increases considerably the range of data and conditions that can be used for validation, 

and therefore reduces random noises in satellite retrievals through averaging. Using this approach, Zhu et al. [2016] found 80 

current HCHO satellite products are biased by –20% to –51% against the SEAC4RS [Toon et al., 2016] aircraft measurements 

over the Southeastern United States during the summer of 2013. Here we follow this indirect validation approach to develop 

a global validation platform for satellite HCHO retrievals using observations from 12 aircraft campaigns all over the world, as 

discussed below. 

2 HCHO observations from aircraft campaigns 85 

Figure 1 shows flight tracks of 12 aircraft campaigns used in this study. Detailed information is summarized in Table 1. 

Together, the 12 aircraft campaigns offer exceptional opportunities for global validating of satellite HCHO retrievals with 

extensive observations over the United States (C1–C9; DISCOVER-AQ California 2013, NOMADSS, SENEX, DISCOVER-

AQ Texas 2013, DISCOVER-AQ Colorado 2014, FRAPPÉ, WINTER, SONGNEX, and WE-CAN, respectively), Eastern 

Asia (C10; KORUS-AQ), and the remote Pacific Ocean (C11–C12; ATom-1 and ATom-2). The aircraft campaigns have great 90 

spatial coverages over HCHO hotspots, such as the Southeastern United States (C2 and C3) dominated by strong biogenic 

isoprene emissions [Guenther et al., 2012], Houston area (C4) featured with high anthropogenic NMVOCs [Zhu et al., 2014], 

and the Western United States (C9) influenced by wildfires. The campaigns also survey different seasons of the year, enabling 

assessment of seasonal biases in satellite HCHO products.  

 95 

During the aircraft campaigns, HCHO observations were made along the flight tracks with multiple instruments, including (1) 

NCAR Difference Frequency Generation Absorption Spectrometer (DFGAS) [Weibring et al., 2006, 2007, 2010], (2) Trace 
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Organic Gas Analyzer (TOGA) [Apel et al., 2003; 2010; 2015], (3) In Situ Airborne Formaldehyde instrument (ISAF) [Cazorla 

et al., 2015], (4) Compact Atmospheric Multispecies Spectrometer (CAMS) [Fried et al., 2011; Richter et al., 2015], and (5) 

Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS) [Müller et al., 2014]. The instrument accuracy 100 

(1 level) is 4.5%, 15% (lower limit; https://airbornescience.nasa.gov/instrument/TOGA), 10% [Cazorla et al., 2015], 4% 

[Richter et al., 2015], and 60% [Hu and Permar, 2019] for DFGAS, TOGA, ISAF, CAMS, and PTR-ToF-MS, respectively. 

The corresponding instrument detection limits are 40–100 ppt [Nowlan et al., 2018], 20 ppt [Wofsy et al., 2018], 36 ppt 

[Cazorla et al., 2015], ~ 40 ppt [Richter et al., 2015] and 300 ppt [Hu and Permar, 2019], respectively. 

 105 

HCHO observations from different instruments are generally consistent. Zhu et al. [2016] reported ISAF to be in good 

agreement with CAMS during the SEAC4RS campaign with a correlation coefficient (r) of 0.99 and a slope of 1.10. ISAF is 

also found consistent (r=0.98) with DFGAS during the DC3 campaign [Barth et al., 2015] with a slope of 1.07 [Liao et al., 

2019]. Figure 2 shows point-to-point comparisons among 1-min averaged TOGA, ISAF, and CAMS HCHO observations 

aboard the aircrafts. There is a high correlation in the mixed layer (here and elsewhere defined as below 2 km; r=0.86) and 110 

free troposphere (> 2 km; r=0.93) between TOGA and CAMS during the FRAPPÉ campaign with a Reduced major axis (RMA) 

regression slope of 1.050.01. During the WINTER campaign, TOGA generally matches with ISAF (r=0.72) within the mixed 

layer. However, consistency between the two instruments begins to fall apart in the free troposphere (r=0.33), which is likely 

driven by sampling differences. TOGA correlates highly with ISAF during the ATom-2 (C12) campaign in both mixed layer 

(r=0.83) and free troposphere (r=0.82), but overall it is 48% higher than ISAF likely due to the fact that the two instruments 115 

are independently calibrated. In this study, we use CAMS data for FRAPPÉ (C6), ISAF data for both WINTER (C7) and 

ATom-2 (C12), given their higher accuracies. 

 

Figure 3 shows mean vertical profiles measured from the 12 aircraft campaigns. For campaigns conducted over/near land (C1–

C10), aircraft observations show higher level of HCHO within the mixed layer as a result of biogenic and anthropogenic 120 

NMVOC emissions. In the free troposphere, HCHO starts to drop sharply due to short lifetimes of highly reactive NMVOCs, 

such as isoprene (~ 1 h) and HCHO itself (~ 2 h). We see enhanced HCHO (~ 2 ppb) in 4–5 km during the WE-CAN (C9) 

campaign, which is caused by intensive primary and secondary production of HCHO from wildfires in the Western United 

States. Mean HCHO over the remote Pacific Ocean (C11–C12) declines with altitudes through the troposphere (below 12 km), 

suggesting oxidation of well-mixed methane as the dominant source of the tropospheric background HCHO. 125 

3 GEOS-Chem as the intercomparison method 

The indirect validation approach requires a CTM to bridge sampling gaps between aircraft observations and satellite retrievals 

[Zhu et al., 2016]. Here we use GEOS-Chem version 12.0.0 (doi:10.5281/zenodo.1343547) as the intercomparison method for 

validation of satellite HCHO columns using aircraft observations. With a detailed representation of ozone-NOx-VOCs-aerosol-
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halogens tropospheric chemistry, the GEOS-Chem model has been used extensively in several studies to simulate HCHO 130 

including comparisons with in situ observations [Jaeglé et al., 2015; Zhu et al., 2016; Chan Miller et al., 2017; Liao et al., 

2019]. Zhu et al. [2016] and Chan Miller et al. [2017] found that GEOS-Chem provides an unbiased simulation of SEAC4RS 

and SENEX aircraft observations within the mixed layer over the Southeastern United States in summer, including horizontal 

patterns and mean vertical profiles. In winter, GEOS-Chem is biased by −32% compared against aircraft observations below 

300 m over the Northeastern United States [Jaeglé et al., 2015]. 135 

 

The GEOS-Chem model is driven by the Goddard Earth Observing System–Forward Processing (GEOS-FP) assimilated 

meteorological data, produced by the NASA Global Modeling and Assimilation Office (GMAO) [Molod et al., 2012]. The 

GEOS-FP meteorological data have a native horizontal resolution of 0.25×0.3125 with 72 vertical pressure levels and 3 h 

temporal frequency (1 h for surface variables and mixed layer depths). Biogenic VOC emissions are from the MEGAN 2.1 140 

model [Guenther et al., 2012] as implemented in GEOS-Chem by Hu et al. [2015]. Anthropogenic emissions are based on the 

NEI2011 inventory [EPA, 2015] over the United States, and the MIX inventory [Li et al., 2017] over the Eastern Asia region. 

Fire emissions are from the fourth-generation global fire emissions database (GFED4) [Giglio et al., 2013]. Surface-driven 

vertical mixing up to the mixing depth is based on the non-local mixing scheme of Holtslag and Boville [1993], as implemented 

in GEOS-Chem by Lin and McElroy [2010]. 145 

 

We run the GEOS-Chem model at a 2×2.5 resolution to simulate the ATom-1 (C11) and ATom-2 (C12) campaigns as HCHO 

over the remote Pacific Ocean is relatively homogeneously distributed due to methane oxidation. Over the continents, we use 

the native resolution (0.25×0.3125, nested version) in GEOS-Chem to better represent heterogeneities in emissions and 

chemistry during the aircraft campaigns (C1–C10) over North America (130–60W, 9.75–60N) and Eastern Asia (70–150 

140E, 15–55N). Dynamic boundary conditions for the nested simulations are from global 2×2.5 runs. Global and nested 

simulations are spun up for 10 and 1 month, respectively, to remove the sensitivity to initial conditions. GEOS-Chem is 

sampled along the flight tracks at the time and locations of the aircraft measurements. 

 

Figure 3 shows GEOS-Chem mean HCHO profiles. Previous studies [Scarino et al., 2014; Millet et al., 2015; Zhu et al., 2016] 155 

found GEOS-FP mixing depth in summer is biased low comparing with observations by a factor of 30%–50%, which may 

partially contribute to the underestimation of HCHO in the mixed layer (Figure 3) by GEOS-Chem over the Unites States (C1–

C6, C9) and South Korea (C10). On top of that, underestimation of highly reactive VOC emissions as reported by Zhu et al. 

[2014] may be another reason for the lower simulated HCHO over Houston area (C4). GEOS-Chem generally reproduces the 

observed vertical distribution of HCHO in the free troposphere. Exceptions are for campaigns surveying the Western United 160 

States in summer (C5, C6, and C9), likely caused by uncertainties in GFED4 fire emissions in the model. 
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By integrating the mean vertical profiles in Figure 3, we estimate, for each aircraft campaign, a mean observed HCHO column, 

a mean GEOS-Chem modeled HCHO column, and the regional bias associated with GEOS-Chem model as informed by 

comparison between observed and modelled HCHO columns. Figure 3 shows the regional bias for each aircraft campaign, 165 

which is later applied as the correction factor in the validation exercises. 

4 Application to NASA operational HCHO product 

NASA operational OMI HCHO product is based on the Smithsonian Astrophysical Observatory (SAO) HCHO retrieval 

algorithm [González Abad et al., 2015]. Briefly, the algorithm follows a two-step approach. First, a radiance reference sector 

correction term (S0) is subtracted from the fitted total SCD (S), yielding the radiance reference sector corrected SCD (S): 170 

∆ΩS = ΩS − ΩS0            (1) 

Following Khokhar et al. (2005) and De Smedt et al. (2008), the radiance reference sector correction (S0) represents a daily 

post-processing normalization for the retrieved SCD, calculated as the difference between the retrieved SCD over the Pacific 

Ocean and the GEOS-Chem climatology (González Abad et al., 2015; González Abad et al., 2016). S is then converted to 

VCD () by applying the localized air mass factor (AMF): 175 

Ω =
∆Ω𝑆

𝐴𝑀𝐹
             (2) 

The AMF depends on a number of factors, including solar zenith angle (Z), satellite viewing angle (V), cloud characteristics, 

scattering properties of the atmosphere and surface, and HCHO a priori profiles. Following Palmer et al. [2001], it is computed 

as the product of a geometrical AMF (AMFG) and a correction with scattering weights w applied to the vertical shape factors 

S: 180 

𝐴𝑀𝐹 = 𝐴𝑀𝐹𝐺 ∫ 𝑤(𝑝)𝑆(𝑝)𝑑𝑝
0

𝑃𝑆
          (3) 

𝐴𝑀𝐹𝐺 = sec θZ + sec θV           (4) 

Here the integration is over the pressure (p) coordinate from the surface (PS) to the top of atmosphere. S is the normalized 

vertical profile of HCHO mixing ratios C(p): 

𝑆(𝑝) =
𝐶(𝑝)ΩA(𝑝)

∫ 𝐶(𝑝)ΩA(𝑝)𝑑𝑝
0
𝑃𝑆

           (5) 185 

where A(p) is the partial air column density at p, and w measure the sensitivity of the backscattered radiation to HCHO. OMI 

SAO HCHO product provides , S, ΔS, AMFG (in term of Z and V), AMF, S, and w for each pixel. Uncertainties associated 

with  are 45–105%, contributed by uncertainties in both AMF (~ 35%) and S (30–100%) [González Abad et al. 2015]. 

 

Here we use the DISCOVER-AQ 2013 (C1) flight campaign as an example to demonstrate the validation process. Validation 190 

of OMI SAO HCHO product starts with the selection of satellite pixels. This is done for each campaign within the 

corresponding study period (Table 1) and domain (defined in Table 1; shown in Figure 1) based on following criteria: (1) pass 
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quality checks (MainDataQualityFlag=0), (2) have cloud fraction less than 0.3, (3) have Z less than 60°, and (4) have VCD 

within the range of –0.5×1016 molecules cm–2 to 1.0×1017 molecules cm–2. We then compute campaign-averaged GEOS-Chem 

HCHO columns by sampling the model according to OMI’s schedule. The original GEOS-Chem columns are further scaled 195 

using correction factors informed by comparison of model and aircraft columns (Figure 3). Figure 4 shows campaign-averaged 

HCHO columns for both OMI SAO and corrected GEOS-Chem over the study domain (California, United States). Campaign-

averaged OMI and corrected GEOS-Chem HCHO columns for other campaigns (C2–C12) are in the Supplement. Poor spatial 

correlations between OMI and corrected GEOS-Chem columns during some campaigns (Figure 4 and Supplement) likely 

reflect large uncertainties in OMI columns. Finally, we compare spatially and temporally averaged HCHO columns, during 200 

the study period and over the study domain, as reported by OMI SAO product and modelled by GEOS-Chem (with correction) 

to estimate the regional systematic bias in OMI SAO HCHO product. Detailed validation results are summarized in Table 2. 

 

We see from Table 2 that relative biases in OMI HCHO product depends on both locations and seasons, ranging from –30.9% 

over South Korea in summer (C10) to +194.6% over Western United States in spring (C8). Overall, the relative biases in OMI 205 

SAO product fall into two categories. First, the product is slightly biased (–30.9% to +16.0%) under high-HCHO conditions 

(defined as mean HCHO column > 1.10×1016 molecules cm–2), such as summertime Southeastern United States (C2, C3, C4) 

and summertime South Korea (C10). A similar bias (–37.0%) in OMI SAO HCHO product is reported by Zhu et al. [2016] for 

summertime Southeastern United States. Second, the product is highly biased (+113.9% to +194.6%) under low-HCHO 

conditions, such as the Western United States (C5, C6, and C8), wintertime United States (C1 and C7), and the remote Pacific 210 

Ocean (C11 and C12). Our work points to a higher bias (~ 120%) in OMI SAO retrievals over the remote Pacific Ocean 

compared with the bias (~ 10%) reported by Wolfe et al. [2019]. This is likely driven by a number of factors: (1) Wolfe et al. 

[2019] use all data, whereas we only use data over the Pacific region (Figure 1); (2) radiance reference sector correction is 

treated differently in the two studies; (3) selection criteria for OMI pixels are different; (4) mean observed HCHO column is 

computed from individual profiles in Wolfe et al. [2019], while it is computed based on a mean profile in this study; (5) and 215 

finally, the relative bias metric is more sensitive to absolute bias under low-HCHO conditions. 

 

We attribute biases in the first case partially to a priori vertical profiles used in the SAO HCHO retrieval algorithm, in particular 

underestimate of HCHO in the mixed layer. SAO HCHO algorithm samples HCHO shape factors (S) from a monthly mean 

climatology based on GEOS-Chem simulations in 2007 at a spatial resolution of 2×2.5, which may not be able to represent 220 

the spatial heterogeneity in chemistry, nor/or to model temporal variations in emissions. After recomputing the AMF with 

observed HCHO shape factors following equation (3)–(5), relative biases in HCHO can be reduced on average from –15.9% 

to –8.4% (C3, C4, C9, and C10 in Table 2). As shown in Figure 5, using observed HCHO shape factors (C3, C4, and C9) 

results in lower AMF by correcting underestimated a priori HCHO within the mixed layer. During the WE-CAN campaign 
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(C9), recomputed AMF is slightly higher than that reported by OMI (Table 2) because of elevated HCHO around 3–5 km from 225 

wildfire plumes (Figure 5). 

 

In the second case, using observed HCHO shape factors, however, barely reduces biases in OMI SAO HCHO product (Table 

2), implying that radiance reference sector corrected SCD (S = S–S0) rather than AMF is likely the main driver of high 

biases. This can be further examined with aircraft observations and OMI HCHO pixels over remote Pacific Ocean (C11 and 230 

C12), where contribution of S0 to S is much lower (~ 15%; Table 2). Integration of ATom1 (C11) and ATom2 (C12) 

vertical profiles indicates a Pacific background HCHO VCD of ~ 3.0×1015 molecules cm–2 (Figure 3), comparable with 

previous measured values (2.8×1015 molecules cm–2 to 4.6×1015 molecules cm–2) over the remote North Pacific Ocean [Singh 

et al., 2009] and modeled results (4.5×1015 molecules cm–2) [Wolfe et al., 2019]. This is equivalent to a background SCD of ~ 

4.7×1015 molecules cm–2 with AMF computed using observed HCHO shape factors (Figure 5). OMI SAO SCD (S) and 235 

radiance reference sector corrected SCD (S) is much higher than such estimated background SCD value by a factor of 2.0 

to 2.5 (Table 2), pointing to potential issues with SCD fitting and/or radiance reference sector correction in the SAO HCHO 

retrieval algorithm. 

 

The SAO retrieval algorithm conducts the radiance reference sector correction by removing the contribution of HCHO over 240 

the remote Pacific Ocean to the radiance reference. This HCHO contribution is derived using a high-resolution solar spectrum 

[Chance et al., 2010] convolved with the instrument response function. Despite OMI’s stability over the mission lifetime 

[Schenkeveld et al., 2017], small spectral changes could have significant impacts on the derived HCHO columns over the 

remote Pacific Ocean where HCHO signals are relatively weak. We revaluate such impacts by supressing removal of HCHO 

contribution in the radiance reference. The new approach improves both spectral fitting results and retrieval stability during 245 

the life span of OMI. In consequence, mean bias in the resulted columns is reduced from 147.1% (Table 2) to 128.2% in the 

second case. We attribute the remaining biases to (1) increased impact of interferers (e.g., O3 and BrO, O2-O2 and water vapor) 

when HCHO signals are weak and (2) the latitudinal dependency of the radiance reference sector correction. We also find that 

OMI SAO HCHO VCD correlates moderately (r=0.38 to 0.66) with surface albedo during some campaigns (C1, C5, and C6), 

suggesting possible bias introduced by using a reflectance climatology [Kleipool et al., 2008] in the retrievals. In summary, 250 

high biases under low-HCHO conditions are likely driven by both radiance reference sector correction and SCD fitting. An 

updated SAO product is being developed to minimize the biases by optimizing the two processes accordingly. 

5 Conclusions 

We have used HCHO observations from 12 aircraft campaigns, together with the GEOS-Chem chemical transport model as 

an intercomparison method, to develop a global validation platform for satellite HCHO retrievals. The global validation 255 

platform offers an alternative way to quickly assess systematic biases in satellite products over large spatial domains and longer 
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temporal periods, facilitating optimization of retrieval settings and the minimization of retrieval biases. Application to NASA 

operational HCHO product (SAO retrievals) indicates that relative biases range from –30.9% to +194.6% depending on 

locations and seasons. Under high-HCHO conditions, such as summertime Southeastern United States, the product is slightly 

biased (–30.9% to +16.0%) due partially to underestimate of HCHO within the mixed layer by a priori profiles. Under low-260 

HCHO conditions, such as wintertime United States and remote Pacific Ocean, the product is highly biased (+113.9% to 

+194.6%), likely as a result of slant column density fitting process of HCHO. Our work points to the need for improvement in 

OMI SAO HCHO product to correct the systematic biases, particularly, optimization of the HCHO slant column fitting and 

reference sector correction. 

Data and code availability 265 

The validation platform (R scripts) is available at: https://doi.org/10.7910/DVN/KG3XNC. 

The GEOS-Chem model is available at http://acmg.seas.harvard.edu/geos/ (last access: Nov. 29, 2019). 

OMI-SAO HCHO data were downloaded from http://disc.sci.gsfc.nasa.gov/Aura/dataholdings/OMI/omhcho_v003.shtml.  

Aircraft observations are available respectively as following: 

DISCOVER-AQ California 2013 (C1): https://www-air.larc.nasa.gov/missions/discover-aq/discover-aq.html  270 

NOMADSS (C2): https://www.eol.ucar.edu/field_projects/nomadss/ 

SENEX (C3): https://www.esrl.noaa.gov/csd/projects/senex/ 

DISCOVER-AQ Texas 2013 (C4): https://www-air.larc.nasa.gov/missions/discover-aq/discover-aq.html  

DISCOVER-AQ Colorado 2014 (C5): https://www-air.larc.nasa.gov/missions/discover-aq/discover-aq.html  

FRAPPÉ (C6): http://catalog.eol.ucar.edu/FRAPPE/ 275 

WINTER (C7): http://catalog.eol.ucar.edu/winter/ 

SONGNEX (C8): https://www.esrl.noaa.gov/csd/projects/songnex/ 

WE-CAN (C9): https://www.eol.ucar.edu/field_projects/we-can/ 

KORUS-AQ (C10): https://www-air.larc.nasa.gov/missions/korus-aq/ 

ATom-1 (C11): https://daac.ornl.gov/ATOM/campaign/ 280 

ATom-2 (C12): https://daac.ornl.gov/ATOM/campaign/ 

Appendix A 

Abbreviations and acronyms 

AMF  Air mass factor 

AMFG  Geometrical Air mass factor 285 

ATom  Atmospheric Tomography Mission 
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CAMS   Compact Atmospheric Multispecies Spectrometer 

CTM   Chemical transport model 

DC3  Deep Convective Clouds and Chemistry Experiment 

DFGAS  Difference Frequency Generation Absorption Spectrometer 290 

DISCOVER-AQ Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant 

to Air Quality 

FRAPPÉ Front Range Air Pollution and Photochemistry Éxperiment 

GEMS  Geostationary Environment Monitoring Spectrometer 

GEOS-FP  Goddard Earth Observing System–Forward Processing 295 

GFED4  Fourth-generation Global Fire Emissions Database 

GMAO   Global Modeling and Assimilation Office 

GOME(-2)  Global Ozone Monitoring Experiment(-2) 

HCHO  Formaldehyde 

ISAF  In Situ Airborne Formaldehyde 300 

KORUS-AQ Korea-United States Air Quality 

LEO  Low Earth Orbit 

MEGAN  Model of Emissions of Gases and Aerosols from Nature 

NEI  National Emissions Inventory 

NMVOCs Non-Methane VOCs 305 

NOMADSS Nitrogen, Oxidants, Mercury, and Aerosol Distributions, Sources, and Sinks 

OMI   Ozone Monitoring Instrument 

OMPS   Ozone Mapping and Profiler Suite 

PTR-ToF-MS  Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer 

RMA  Reduced major axis 310 

SAO   (Harvard) Smithsonian Astrophysical Observatory 

SCD   Slant Column Density 

SCIAMACHY  Scanning Imaging Absorption spectroMeter for Atmospheric Chartography 

SEAC4RS  Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys 

SENEX  Southeast Nexus 315 

SONGNEX Shale Oil and Natural Gas Nexus 

TEMPO  Tropospheric Emissions: Monitoring of Pollution 

TOGA  Trace Organic Gas Analyzer 

TROPOMI TROPOspheric Monitoring Instrument 

VCD   Vertical Column Density 320 
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VOCs   Volatile Organic Compounds 

WE-CAN Western wildfire Experiment for Cloud chemistry, Aerosol absorption and Nitrogen 

WINTER The Wintertime INvestigation of Transport, Emissions, and Reactivity  
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 630 

Figure 1. Flight tracks of the 12 aircraft campaigns used in this study. Panel (a) shows the spatial coverage (green rectangles) of the 

campaigns. Panel (b) (inset) zooms in campaigns over the United States. Aircraft campaigns are numbered as C1–C12. Table 1 summarizes 

detailed information of the 12 campaigns. Formaldehyde (HCHO) mixing ratios along aircraft flight tracks are shown in panel (c)–(n). Color 

bar saturates at 5 ppbV. The green rectangle in panel (c)–(n) is the same as that in (a) and (b), indicating spatial domain of a certain campaign. 

The same domain is also defined in Table 1.  635 
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Figure 2. Comparisons between 1-min averaged HCHO observations from multiple instruments. (a) Observations from TOGA and CAMS 

instruments aboard the NSF/NCAR C-130 during the FRAPPÉ campaign. (b) Observations from TOGA and ISAF instruments aboard the 

NSF/NCAR C-130 during the WINTER campaign. (c) Observations from TOGA and ISAF instruments aboard the NASA DC-8 during the 640 
ATom-2 campaign. HCHO data points are colored by atmospheric pressure. Reduced major axis (RMA) regression slops and intercepts are 

shown along with the correlation coefficient (r), sample size (N), RMA regression line (blue) and 1:1 line (black).  
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Figure 3. Mean HCHO vertical profiles as observed during the 12 aircraft campaigns (Table 1) and simulated by GEOS-Chem. GEOS-

Chem is sampled along the flight tracks at the time and locations of the measurements. We only use observed and modeled HCHO values 645 
within the study area, defined by the green rectangle for each campaign in Figure 1. HCHO values are vertically binned in increments of 500 

m. Shading gives the standard deviation in the observations. Observed (black) and modeled (red) HCHO column densities (1015 molecules 

cm–2) are insert along with relative biases (in parentheses) in modeled column densities. The relative biases are further used as correction 

factors for GOES-Chem columns. Observed column densities are computed using mean observed mixing ratio (black lines), temperature, 

and pressure. Modeled column densities are computed according to GEOS-Chem HCHO vertical profiles (red lines) as well as temperature 650 
and pressure from GEOS-FP. Notice that scale in panel (k) and (l) is different from that in other panels. 
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Figure 4. HCHO vertical column densities over California, United States during the DISCOVER-AQ California 2013 (C1; 16 Jan. – 6 Feb.). 

The left panel shows data from OMI SAO HCHO product. The right panel shows GEOS-Chem model results sampled on the OMI schedule 

(see text), and scaled by a factor of 1.53 to correct for the bias relative to aircraft measurements (Figure 3). OMI and GEOS-Chem results 655 
are regridded onto the 0.5×0.5 grids. The green rectangles represent the study domain (same as that in Figure 1), which is also defined in 

Table 1. Notice the two panels are in different HCHO scales.  
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Figure 5. Air mass factor (AMF) components over the 12 aircraft campaigns. Each panel shows mean scattering weights (w; blue dashed 

line) and shape factors (S; blue solid line) from OMI SAO HCHO product averaged over the corresponding study domain (shown in Figure 660 
1; defined in Table 1) during the campaign period (defined in Table 1), as well as the product of the two (blue dotted line) from which mean 

AMF is derived by vertical integration using equation (4). Each panel also shows observed HCHO shape factors (black solid) from the mean 

HCHO profile in Figure 3. We use mean HCHO profiles from ATom-1 and ATom-2 (Figure 3) to fill observations above 6 km. Also shown 

is the product (black dotted line) of mean OMI scattering weights (blue dashed line) and observed HCHO shape factor (black solid). Mean 

AMF values are given in the legend computed using OMI (blue) and observed (black) shape factors.  665 
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Table 1. Overview of the 12 aircraft campaigns used in this study 

Campaign 

ID 
Campaign name Region Date Platform 

HCHO 

instrument(s) a 
Domain b References c 

C1 
DISCOVER-AQ 

California 2013 

California, 

U.S. 

Jan. 16–Feb. 06 

2013 

NASA 

P-3B 
DFGAS (4%) 

31.4–39.3N 

123.3–117.8W 
1, 2 

C2 NOMADSS 
Southeastern 

U.S. 

Jun. 03–Jul. 14 

2013 

NSF/NCAR 

C130 
TOGA (15%) d 

31.3–38.2N 

96.8–82.7W 
3 

C3 SENEX 
Southeastern 

U.S. 

Jun. 03–Jul. 10 

2013 

NOAA 

WP-3D 
ISAF (10%) 

31.2–41.0N 

95.2–82.4W 
4 

C4 
DISCOVER-AQ 

Texas 2013 
Texas, U.S. 

Sep. 04–Sep. 29 

2013 

NASA 

P-3B 
DFGAS (4%) 

29.1–30.5N 

95.95–94.65W 
1, 2 

C5 
DISCOVER-AQ 

Colorado 2014 
Colorado, U.S. 

Jul. 17–Aug. 10 

2014 

NASA 

P-3B 
DFGAS (4%) 

38.5–42.1N 

105.4–103.4W 
1, 2 

C6 FRAPPÉ Colorado, U.S. 
Jul. 26–Aug. 18 

2014 

NSF/NCAR 

C130 

CAMS (4%) 

TOGA (15%) d 

38.5–42.0N 

109.3–102.4W 
5, 6 

C7 WINTER 
Northeastern 

U.S. 

Feb. 03–Mar. 13 

2015 

NSF/NCAR 

C-130 

ISAF (10%) 

TOGA (15%) d 

39.0–41.8N 

72.2–67.9W 
7 

C8 SONGNEX Western U.S. 
Mar. 19–Apr. 27 

2015 

NOAA 

WP-3D 
ISAF (10%) 

30.0–50.0N 

111.0–100.0W 
8 

C9 WE-CAN Western U.S. 
Jul. 26–Sep. 13 

2018 

NSF/NCAR 

C-130 

PTR-ToF-MS 

(60%) 

36.0–48.0N 

123.0–109.0W 
9, 10 

C10 KORUS-AQ South Korea 
Apr. 26–Jun. 18 

2016 

NASA 

DC-8 
CAMS (4%) 

34.6–37.8N 

125.7–129.6W 
11 

C11 ATom-1 Pacific Ocean 
Jul. 29–Aug. 23 

2016 

NASA 

DC-8 
ISAF (10%) 

60.0S–50N 

179.0–141.0W 
12 

C12 ATom-2 Pacific Ocean 
Jan. 26–Feb. 21 

2017 

NASA 

DC-8 

ISAF (10%) 

TOGA (15%) d 

60.0S–50N 

179.0–141.0W 
12 

a Instrument accuracy is given in parentheses. During C6, C7, and C12, HCHO is measured by two independent instruments 
b Shown as green rectangles in Figure 1 
c 1 Crawford and Pickering [2014]; 2 DISCOVER-AQ Science Team [2014]; 3 Emmons [2016]; 4 Warneke et al. [2016]; 5 Pfister et al. 

[2017]; 6 Richter et al. [2015]; 7 UCAR/NCAR - Earth Observing Laboratory et al. [2016]; 8 National Oceanic and Atmospheric 670 
Administration (NOAA) [2017];  9 Pollack et al. [2019]; 10 Hu and Permar [2019]; 11 KORUS-AQ [2016]; 12 Wofsy et al. [2018] 
d TOGA has an accuracy of 15% or better  
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Table 2. HCHO columns and validation results over the 12 aircraft campaigns a 

Campaign 

ID 

GEOS-Chem columns OMI 
with observed shape 

factors 

Original b Corrected c AMFG AMF S 
d S0 

e avg f comp g AMF h comp i 

C1 2.82 4.30 3.14 1.25 16.40 5.03 
10.25 

(+138.4%) 

9.07 

(+110.9%) 
1.07 

10.66  

(+148.0%) 

C2 15.49 18.36 2.54 0.97 16.78 4.73 
13.24 

(–27.9%) 

12.42 

(–32.4%) 
0.96 

12.58  

(–31.5%) 

C3 14.53 17.68 2.48 0.95 16.87 4.53 
13.88 

(–21.5%) 

12.95 

(–26.8%) 
0.83 

14.85  

(–16.0%) 

C4 16.05 17.32 2.68 1.07 17.45 5.10 
11.97 

(–30.90%) 

11.52 

(–33.5%) 
0.88 

14.06 

(–18.8%) 

C5 6.13 5.05 2.49 1.02 15.88 3.85 
13.58 

(+168.7%) 

11.85 

(+134.6%) 
0.87 

13.89  

(+174.8%) 

C6 j 5.59 5.37 2.54 1.05 15.47 4.02 
12.44 

(+131.6%) 

10.90 

(+102.9%) 
0.86 

13.30  

(+147.7%) 

C7 k 2.66 3.44 3.19 1.45 12.09 1.23 
8.79 

(+155.6%) 

7.49 

(+117.8%) 
1.48 

7.33 

(+113.1%) 

C8 2.75 3.71 2.59 1.19 15.19 3.27 
10.92 

(+194.6%) 

10.02 

(+170.4%) 
1.26 

9.47  

(+155.5%) 

C9 5.85 10.92 2.60 1.09 16.11 3.57 
12.67 

(+16.0%) 

11.49 

(+5.2%) 
1.19 

10.55  

(–3.5%) 

C10 7.34 10.69 2.59 1.15 16.36 5.14 
10.49 

(–1.8%) 

9.79 

(–8.4%) 
1.07 

10.45  

(–2.3%) 

C11 2.66 2.97 2.75 1.61 11.86 1.56 
6.72 

(+126.6%) 

6.39 

(+115.4%) 
1.56 

6.60 

(+122.5%) 

C12 k 2.61 3.19 2.78 1.64 12.06 1.52 
6.82 

(+113.9%) 

6.42 

(+101.4%) 
1.61 

6.53 

(+104.8%) 

SEAC4RS l 15.23 16.90 2.66 0.95 - - 
10.60 

(–37.0%) 
- - - 

a Results are spatially and temporally averaged values for the study regions (shown as green rectangles in Figure 1 and defined in Table 1) 

during the study periods (defined in Table 1). HCHO columns (GEOS-Chem columns, S, S0, avg, and comp) are in the unit of 1015 675 
molecules cm–2. For each aircraft campaign, biases relative to the corrected GEOS-Chem column are given in parentheses 
b sampled from the GEOS-Chem models according to OMI’s schedule 
c corrected with the factors informed by comparison of observed and modeled HCHO columns (Figure 3) 
d SCD computed using vertical column density without reference sector correction (“ColumnAmount” data field in OMI SAO HCHO product) 

and air mass factor (AMF) 680 
e SCD correction term recomputed using averaged OMI S, avg, and AMF following equation (1) 
f mean VCD by directly averaging valid satellite pixels 
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g VCD recomputed using averaged OMI S, S0, and AMF following equation (1) 
h recomputed using averaged OMI AMFG, observed mean HCHO shape factors (Figure 5), and mean OMI scattering weights (Figure 5) 

following equation (3)–(5) 685 
i VCD computed using recomputed AMF, averaged OMI S, and averaged OMI S0 following equation (1)–(2) 
j using CAMS observations 
k using ISAF observations 
l results reported by Zhu et al. [2016] over the southeastern United States (30.5–39.0N, 95.0–81.5W) during Aug. 05–Sep. 25, 2013. Results 

are based on a different version of GEOS-Chem model 690 
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